Mechanical Design Engineering

Design Related Engineering Problem Solving

MAE 495 – 005
MAE 589 – 005, 604
Spring 2015
Logistical Information

Instructor:
Carl F. Zorowski “Dr Z”
Page Hall -245
Phone: 515 - 6597
Fax: 515 - 8415
Email: zorowski@ncsu.edu
On Campus Tues. – Thurs.
 (~9:00 – ~2:00)

Class:
On Campus: Tues., Thurs. 331 Daniels
 10:15 – 11:30
Distance Ed Internet Delivery
Course Objective

Help students and practitioners develop the skills of synthesis, inventiveness, operational analysis and decision making to successfully use the engineering design practice process through the presentation and application of the methodologies of engineering problem solving together with personal experience in their use in solving design related engineering problems.
Course Justification

• Early engineering education was based on engineering practice and empirical knowledge, (ME program at NCSU began as “Mechanic Arts” – wood working, metal fabrication and drafting).

• For the first half of the 20th century engineering design, practice and education involved the use of handbooks, slide rules and the drafting table.

• Laboratory experience involved learning to operate and make performance measurements on actual industrial machinery and equipment.
Course Justification

• Early engineering education was based on engineering practice and empirical knowledge, (ME program at NCSU began as “Mechanic Arts” – wood working, metal fabrication and drafting).

• For the first half of the 20th century engineering design, practice and education involved the use of handbooks, slide rules and the drafting table.

• Laboratory experience involved learning to operate and make performance measurements on actual industrial machinery and equipment.
Course Justification

• Early engineering education was based on engineering practice and empirical knowledge, (ME program at NCSU began as “Mechanic Arts” – wood working, metal fabrication and drafting).

• For the first half of the 20th century engineering design, practice and education involved the use of handbooks, slide rules and the drafting table.

• Laboratory experience involved learning to operate and make performance measurements on actual industrial machinery and equipment.
Course Justification

• Early engineering education was based on engineering practice and empirical knowledge, (ME program at NCSU began as “Mechanic and drafting).

• For the first half of the 20th century engineering design, practice and education involved the use of handbooks, slide rules and the drafting table.

• Laboratory experience involved learning to operate and make performance measurements on actual industrial machinery and equipment.
Course Justification

• Early engineering education was based on engineering practice and empirical knowledge, (ME program at NCSU began as “Mechanic Arts” – wood working, metal fabrication and drafting).

• For the first half of the 20th century engineering education involved the use of handbooks, slide rules and the drafting table.

• Laboratory experience involved learning to operate and make performance measurements on actual industrial machinery and equipment.
• Engineering science began replacing practice and empiricism in engineering curricula as a result of WWII, early 50’s, and Sputnik in 1957

• Some educators recognized that development of skills needed for design practice required a different approach. (synthesis vs. analysis) (middle 50’s through 60’s)

• Analysis dominated over synthesis and effective education in design received minimal attention. (easier to teach analysis and conduct engineering science research) (late 60 through early 80’s)
Engineering science began replacing practice and empiricism in engineering curricula as a result of WWII, early 50’s, and Sputnik in 1957.

Some educators recognized that development of skills needed for design practice required a different approach. (synthesis vs. analysis) (middle 50’s through 60’s)

• Analysis dominated over synthesis and effective education in design received minimal attention. (easier to teach analysis and conduct engineering science research) (late 60 through early 80’s)
Engineering science began replacing practice and empiricism in engineering curricula as a result of WWII, early 50’s, and Sputnik in 1957. Some educators recognized that development of skills needed for design practice required a different approach (synthesis vs. analysis) (middle 50’s through 60’s)

- Analysis dominated over synthesis, and effective education in design received minimal attention. (easier to teach analysis and conduct engineering science research) (late 60’s through early 80’s)
• Engineering science began replacing practice and empiricism in engineering curricula as a result of WWII, early 50’s, and Sputnik in 1957

• Some educators recognized that development of skills needed for design practice required a different approach. (synthesis vs. analysis) (middle 50’s through 60’s)

• Analysis dominated over synthesis and effective education in design received minimal attention. (easier to teach analysis and conduct engineering science research) (late 60 through early 80’s)
Justification (cont.)

• Engineering science began replacing practice and empiricism in engineering curricula as a result of WWII, early 50’s, and Sputnik in 1957

• Some educators recognized that development of skills needed for design practice required a different approach. (synthesis vs. analysis) (middle 50’s through 60’s)

• Analysis dominated over synthesis and effective education in design received minimal attention. (easier to teach analysis and conduct engineering science research) (late 60 through early 80’s)
Justification (cont.)

- Industry brought oversight and lack of design skill development to the attention of academia in late 1980’s. (industry found it had to educate it own designers)

- Some meaningful design instruction reintroduced through requirements for program accreditation. (ABET Criteria changes in 1990s)

- Today globalization of product development and production is occurring at an unprecedented rate in both developing and industrialized countries. (India, China, Taiwan, etc.).
• Industry brought oversight and lack of design skill development to the attention of academia in late 1980’s. (industry found it had to educate it own designers)

• Some meaningful design instruction reintroduced through requirements for program accreditation. (ABET Criteria changes in 1990s)

• Today globalization of product development and production is occurring at an unprecedented rate in both developing and industrialized countries. (India, China, Taiwan, etc.).
Justification (cont.)

• Industry brought oversight and lack of design skill development to the attention of academia in late 1980’s. (industry found it had to educate it own designers)

• Some meaningful design instruction reintroduced through requirements for program accreditation. (ABET Criteria changes in 1990s)

• Today globalization of product development and production is occurring at an unprecedented rate in both developing and industrialized countries. (India, China, Taiwan, etc.).
Justification (cont.)

• Multinational firms around the world are conducting high tech engineering and research on a 24/7 basis. (result of global wide-band communication and inter net)

• To maintain technological leadership in this “Flattening World” (Tom Freidman -2007) we must become the source of new products, service ideas and technical innovations.

• There is a real need for engineering students and practitioners to develop their creative design and problem solving skills to meet this challenge.
• Multinational firms around the world are conducting high tech engineering and research on a 24/7 basis. (result of global wide-band communication and internet)

• To maintain technological leadership in this “Flattening World” (Tom Freidman -2007) we must become the source of new products, service ideas and technical innovations.

• There is a real need for engineering students and practitioners to develop their creative design and problem solving skills to meet this challenge.
Justification (cont.)

• Multinational firms around the world are conducting high tech engineering and research on a 24/7 basis. (result of global wide-band communication and inter net)

• To maintain technological leadership in this “Flattening World” (Tom Freidman -2007) we must become the source of new products, service ideas and technical innovations.

• There is a real need for engineering students and practitioners to develop creative design and problem solving skills to meet this challenge.
Justification (cont.)

• Multinational firms around the world are conducting high tech engineering and research on a 24/7 basis. (result of global wide-band communication and internet)

• To maintain technological leadership in this “Flattening World” (Tom Freidman -2007) we must become the source of new products, service ideas and technical innovations.

• There is a real need for engineering students and practitioners to develop creative design and problem solving skills to meet this challenge.

Hope to accomplish in this course!
A Fact of Life

I **cannot teach you** how to be a successful engineer/designer

(there is no simple formula or silver bullet)

but

You **can be helped** to develop your own creative and innovative engineering/design skills.
But How ??

Through the presentation and application of problem solving practices so that you can learn through your own experience by solving real engineering problems using these methodologies
Generic Practice Process

- Problem definition
- Solution synthesis
- Model formulation
- Application of engineering principles
- Analytic manipulation and/or experimentation
- Evaluate results
- Establish reasonableness
- Extract generalizations
- Draw conclusions and communicate
An Operational Conundrum!

Positives +

- There exists a ubiquitous availability of personal computers together with all types of sophisticated math, statistics and engineering design software (CAD, CAM, FEA, JMP, etc. systems).

- Applications of these devices with their many computational capabilities together with existing software permits the generation of numerical and graphical results rapidly and with great detail to problems with high degrees of complexity.
Conundrum (cont.)

Negatives –

• Interpretation and understanding of generated results can be difficult, misunderstood or improperly interpreted because of lack of understanding of solution process and underlying assumptions.

• Specific numerical solutions provide limited insight into how results can be generalized or the effect of changes in problem parameters on outcomes.
Conundrum (cont.)

Negatives –

• Interpretation and understanding of generated results can be difficult, misunderstood or improperly interpreted because of lack of understanding of solution process and underlying assumptions.

• Specific numerical solutions provide limited insight into how results can be generalized or the effect of changes in problem parameters on outcomes

Example: How meaningful is the following FEA calculated stress number?

45.326798 kpsi
"IT JUST SEEMED LOGICAL TO HAVE A SCREEN FOR EACH DIMENSION"
Course Content

1. Introduction
 Engineering in Context
 Design Engineering as a Discipline
 The Engineering Design Process
 Skills of Engineering Design
 Synthesis vs. Analysis

2. Personal traits and Preferences
 Myers Briggs Indicators
 Left brain/ right brain
 Learning styles

3. Creativity
 Creative Process
 Formal techniques
Course Content (cont.)

4. Operational Analysis
 Engineering Analysis Methodology
 Problem Definition and Model Formulation
 Analytical and/or Experimental Analysis
 Computation and Checking
 Evaluation and Communication
 Case Study

5. Design of Power Transmissions
 Definitions and Properties
 Kinematics of Gear Trains
 Principles of Power Transmission
 Constant Speed Devices
 Fluid Couplings and Torque Converters
Course Content (cont.)

6. Design for Dynamic Response
 Harmonic Systems
 Forced Vibration and Resonance
 Design for Isolation
 Impact Loading Considerations

7. Design for Deflection
 Comparative Solution Methods
 Mechanical Strain Energy
 Strain Energy in Slender Members
 Castiglione's Theorem
 Indeterminate Structures
Course Content (cont.)

8. Design of Complex Mechanical Sections
 Unsymmetrical Cross Section Beams
 Non Circular Cross Section Shafts
 Simple Reinforced Composites
 Buckling and Stability Considerations

9. Design for Assembly
 Process Definition
 Product and Part Design Guidelines
 Redesign for improvement

10. Design for Strength and Endurance
 Static Failure Criteria
 Fatigue Failure Prediction
Conduct of Course

Class Meetings and Lectures -
 Present relevant content materials
 Work sample problems
 Solve and discuss assigned problems
 Engage in interactive learning exercises

Out of Class Activity -
 Solve assigned engineering problems
 Work in teams on real redesign problem

Grading -
 No exams are scheduled
 Grade based on problem solutions
Problem Assignments

• Eight problems beginning with 2nd week of class
• Solutions due one week after assignment (except Prob. 1)
• Submission in formal report format
• All problems will be “graded” and discussed
• Redesign problem after spring break
• Solutions will be presented orally

Course grade is based on problem and project performance
Problem Grading Process

- Students submit formal solution
- Instructor solution presented in class session
- Students self-grade their own problem submission
- Self-assigned grades submitted and recorded
- Some selected solutions reviewed by the instructor weekly
- Each student will have one solution instructor graded
- Grading guidelines and metrics will be provided
Activity Calendar

<table>
<thead>
<tr>
<th>Wks</th>
<th>Dates</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Assignment Made on Tues</th>
<th>Solution Due Due on Tues</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 5 - 9</td>
<td></td>
<td></td>
<td>First Day</td>
<td></td>
<td>Session -1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Jan 12 - 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Session -3</td>
<td>Problem - 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Jan 19 - 23</td>
<td>Holiday</td>
<td></td>
<td></td>
<td></td>
<td>Session -5</td>
<td>none</td>
<td>Problem - 1</td>
</tr>
<tr>
<td>4</td>
<td>Jan 26 - 30</td>
<td>Session -2</td>
<td></td>
<td></td>
<td></td>
<td>Session -7</td>
<td>Problem - 2</td>
<td>Problem - 1</td>
</tr>
<tr>
<td>5</td>
<td>Feb 2 - 6</td>
<td>Session -8</td>
<td></td>
<td></td>
<td></td>
<td>Session -9</td>
<td>Problem - 3</td>
<td>Problem - 2</td>
</tr>
<tr>
<td>6</td>
<td>Feb 9 - 13</td>
<td>Session -110</td>
<td></td>
<td></td>
<td></td>
<td>Session -11</td>
<td>Problem - 4</td>
<td>Problem - 3</td>
</tr>
<tr>
<td>7</td>
<td>Feb 16 - 20</td>
<td>Session -12</td>
<td></td>
<td></td>
<td></td>
<td>Session -13</td>
<td>Problem - 5</td>
<td>Problem - 4</td>
</tr>
<tr>
<td>8</td>
<td>Feb 23 - 27</td>
<td>Session -14</td>
<td></td>
<td></td>
<td></td>
<td>Session -15</td>
<td>Problem - 6</td>
<td>Problem - 5</td>
</tr>
<tr>
<td>9</td>
<td>Mar 2 - 6</td>
<td>Session -16</td>
<td></td>
<td></td>
<td></td>
<td>Session -17</td>
<td>Problem - 7</td>
<td>Problem - 6</td>
</tr>
<tr>
<td>10</td>
<td>Mar 9 - 13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Mar 16 - 20</td>
<td>Session -18</td>
<td></td>
<td></td>
<td></td>
<td>Session -19</td>
<td>Problem - 8</td>
<td>Problem - 7</td>
</tr>
<tr>
<td>12</td>
<td>Mar 23 - 27</td>
<td>Session -20</td>
<td></td>
<td></td>
<td></td>
<td>Session -21</td>
<td>Project Assigned</td>
<td>Problem - 7</td>
</tr>
<tr>
<td>13</td>
<td>Mar 30 - Apr 3</td>
<td>Session -22</td>
<td>Holiday</td>
<td></td>
<td>Holiday</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Apr 6 - 10</td>
<td>Session -23</td>
<td></td>
<td></td>
<td></td>
<td>Session -24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Apr 13 - 17</td>
<td>Session -25</td>
<td></td>
<td></td>
<td></td>
<td>Session -26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Apr 20 - 24</td>
<td>Session -27</td>
<td></td>
<td></td>
<td></td>
<td>Project Due</td>
<td>Last Day</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Apr 27 - May 1</td>
<td>Reading Day</td>
<td>Reading Day</td>
<td>Finals</td>
<td>Finals</td>
<td>Finals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>May 4 - 8</td>
<td>Finals</td>
<td></td>
<td></td>
<td></td>
<td>Finals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Course Web Sites

- Recorded lectures available through “Real Media” on EOL established course page.
- Course moodle site will be set up with MAE 589-604 as “parent” and MAE 589-005 as “child.
- All materials presented in class will be posted – feel free to print any materials
- Lectures notes will be available by class session
- Problem solutions will be posted following presentation and discussion
Relevant References

• Ver Planck and Teare, Engineering Analysis, An Introduction to Professional Method, John Wiley & Sons, 1954

• Weinstein and Angrist, An Introduction to the Art of Engineering, Allyn and Bacon, Inc., 1970

• Pink, A Whole New Mind, Moving from the Information Age to the Conceptual Age, Riverhead Books, 2005

• Friedman, The World is Flat, Farrar, Straus and Giroux, 2007