Course Objective –
Help students and practitioners become better design related engineering problems solvers through the development of the skills of Synthesis, Inventiveness, Operational analysis and Decision making to successfully use the engineering design practice process through the presentation and application of the methodologies of engineering problem solving together with personal experience in their use in solving design related engineering problems.

Justification -
Today globalization of product development and production is occurring at an unprecedented rate in both developing and industrialized countries. (India, China, Taiwan, etc.). Multinational firms around the world are conducting high tech engineering and research on a 24/7 basis. (the result of global wide-band communication and internet). To maintain technological leadership in this “Flattening World” (Tom Freidman -2007) we must become the source of new products, service ideas and technical innovations. There is a real need for engineering students and practitioners to develop their creative design and problem solving skills to meet this challenge.

Course Content –
1. Introduction
 Engineering in Context
 Design Engineering as a Discipline
 The Engineering Design Process
 Skills of Engineering Design
 Synthesis vs. Analysis
2. Personal traits and Preferences
 Myers Briggs Indicators
 Left brain/ right brain
 Learning styles
3. Creativity
 The Creative Process
 Formal techniques
4. Operational Analysis
 Engineering Analysis Methodology
 Problem Definition and Model Formulation
 Analytical and/or Experimental Analysis
 Computation and Checking
 Evaluation and Communication
 Case Study
5. Design of Power Transmissions
 Definitions and Properties
 Kinematics of Gear Trains
Principles of Power Transmission
Constant Speed Devices
Fluid Couplings and Torque Converters

6. Design for Dynamic Response
 Harmonic Systems
 Forced Vibration and Resonance
 Design for Isolation
 Impact Loading Considerations

7. Design for Deflection
 Comparative Solution Methods
 Mechanical Strain Energy
 Strain Energy in Slender Members
 Castiglione’s Theorem
 Indeterminate Structures

8. Design of Complex Mechanical Sections
 Unsymmetrical Cross Section Beams
 Non Circular Cross Section Shafts
 Simple Reinforced Composites
 Buckling and Stability Considerations

9. Design for Assembly
 Process Definition
 Product and Part Design Guidelines
 Redesign for improvement

10. Design for Strength and Endurance
 Static Failure Criteria
 Fatigue Failure Prediction

Conduct of Class-
 Class Meetings and Lectures -
 Present relevant content materials
 Work sample problems
 Solve and discuss assigned problems
 Engage in interactive learning exercises
 Out of Class Activity -
 Solve assigned engineering problems
 Work in teams on real redesign problem

Grading -
 No exams are scheduled
 Grade based on problem and project solutions

Problem Assignments -
 Eight problems beginning with 2nd week of class
 Solutions due one week after assignment (except Prob. 1)
 Submission in formal report format
 All problems will be “graded” and discussed
 Redesign problem after spring break
Problem Grading Process –
 Students submits formal solution
 Instructor solution presented in class session
 Students self grade own problem submission
 Self assigned grades submitted and recorded
 Some selected solutions reviewed by instructor weekly
 Each student will have one solution instructor graded
 Grading guidelines and metrics will be provided