CE 536 - Introduction to numerical methods for civil engineers Summer 2024 (via taped lectures)

Description

This is an entry level graduate course intended to give an introduction to widely used numerical methods through application to several civil and environmental engineering problems. The emphasis will be on the breadth of topics and applications; however, to the extent possible, the mathematical theory behind the numerical methods will also be presented. The course is expected to lay foundation for students beginning to engage in their thesis projects that involve numerical methods. Student will use MATLAB as a tool in the course. Experience with MATLAB is not required. The course will be taught in an interactive setting in a computer equipped classroom.

Student Learning Outcomes

Upon completion of the course, the students will be able to:

- Describe and apply basic numerical methods for civil engineering problem solving.
- Develop algorithms and programs for solving civil engineering problems involving: (i) multi-dimensional integration, (ii) multivariate differentiation, (iii) ordinary differential equations, (iv) partial differential equations, (v) optimization, and (vi) curve fitting or inverse problems.

Module	Торіс	Relevant
		Lectures
1	MATLAB Basics	Lectures 1-6
1.1	General MATLAB commands and features (Assignment 0)	Lecture 1
1.2	Numeric arrays, Cell arrays, Structure Arrays	Lecture 2
1.3	Flow control, Scripts, and Functions	Lecture 3
1.4	Engineering Examples	Lectures 4-6
	Assignment 1 – Matlab basics	Lectures 4-6
	Quiz 0 (practice), Quiz 1 (Basics)	Lecture 7
2	Numerical Integration and Differentiation	Lectures 7-12
2.1	Numerical integration techniques and civil engineering	Lectures 7-11
	applications – Newton-cotes formulas, line integrals, multi-	
	dimensional integrals, integrating tabular data, Gauss-	
	quadrature, Monte-Carlo integration	

Course Schedule

	Assignment 2 – Numerical Integration methods with	Lectures 7-11
2.2	Applications	Lacturas 11 12
2.2	Numerical unrelentiation with engineering applications –	Lectures 11-15
	multivariate differentiation differentiation of tabular data	
	Quiz 2 (Numerical Integration)	Lecture 13
	Assignment $3 - Advanced numerical integration and$	Lectures 9-13
	differentiation with applications, Quiz 3	
3	Ordinary differential equations	Lectures 13-20
3.1	Initial value problems with applications in structural and	Lectures 13-16
	environmental engineering - Runge-Kutta methods, Single	
	ODEs, systems of ODES, higher order ODEs	
3.2	Stiff systems with applications in environmental	Lecture 17
	engineering	
3.3	Boundary value problems in structural and environmental	Lectures 19-21
	engineering, Differential Algebraic Systems	
	Assignment 4 – ODE methods and applications, Quiz 4	Lectures 13-21
4	Linear and non-linear system solution (direct and iterative	Lectures 21-22
	methods)	
4.1	Solving linear systems – Gaussian elimination, Gauss-	Lectures 21
	Jordan, Iterative methods, applications	
4.2	Solving nonlinear systems – Newton-Raphson method,	Lectures 22
	engineering applications	
	Assignment 5 – Linear and nonlinear systems	Lectures 21 - 22
5	Partial differential equations	Lectures 23 - 25
5.1	Finite-difference methods – elliptic, parabolic and	Lecture 23
	hyperbolic systems, boundary conditions	
5.2	Applications in groundwater flow and transport	Lectures 24 - 25
5.2	Matlab PDE toolbox	Lecture 25
	Assignment 6 – PDE solution of groundwater applications	Lectures 23 -25
6	Optimization	Lectures 26 - 28
6.1	Example applications in environmental and structural engineering	Lecture 26
6.2	Gradient based methods with applications in structural	Lectures 27
	and water resources engineering	
6.3	Heuristic methods with applications in water resources	Lecture 28
	engineering	
6.4	Application case studies in structural and environmental	Lectures 27-28
	engineering	
	Assignment 7 – Optimization applications in civil	Lectures 26 - 29
	engineering	
7	Curve fitting and inverse problems	Lectures 29 - 31
7.1	Linear and non-linear regression with applications	Lecture 30

7.2	Direct and indirect methods with applications	Lecture 30-31
8	Other features of MATLAB (GUI, Simulink, Mapping etc.)	Lecture 31
	Mini-project – One dimensional groundwater flow equation with parameter fitting (Due 2 weeks from assigned date)	Lecture 31 (minute 7.5)
	Final Exam (Take Home; Comprehensive, Due 7 days from assigned date)	

Grading

A weighted average grade will be calculated as follows¹: Assignments (50%), Mini-Project (20%), Final exam (30%). Lowest assignment grade will be dropped from the final grade calculation. +/- Grading system will be used.

Policies

Class attendance and full participation is expected of all students and university attendance regulations will be enforced as appropriate. Students shall adhere to the University's policy on academic integrity and classroom conduct found on the university's web site². Reasonable accommodations will be made for students with verifiable disabilities. In order to take advantage of available accommodations, students must register with Disability Services for Students at 1900 Student Health Center, Campus Box 7509, 515-7653. For more information on NC State's policy on working with students with disabilities, please see the Academic Accommodations for Students with Disabilities Regulation³.

Prerequisites

Graduate standing in engineering. MA 302 (or equivalent) or permission from instructor. Discuss with instructor for any clarification regarding these requirements. Undergraduate students should have a GPA of 3.0 or better and Junior standing.

Recommended (Hardcover book)

Chapra, S.C., and, R.P. Canale, **Numerical methods for engineers**, McGraw Hill, 6th/7th/8th Edition, 2010/2015/2020.

¹ Weighting subject to change within the ranges

² <u>http://studentconduct.ncsu.edu/academic-integrity-an-overview</u>

³ <u>http://dso.dasa.ncsu.edu/</u>

Optional Texts:

Chapra, S.C. **Applied numerical methods with MATLAB for engineers and scientists**, 3rd edition, McGraw Hill, 2012.

Palm W.J. III, **Introduction to MATLAB 7 for engineers**, 2nd edition, McGraw Hill, 2005.

Schilling, R.J., and S.L. Harris, **Applied numerical methods for** engineers using MATLAB and C, Brooks/Cole Publishers, 2000.

Instructor (available via email and zoom)

Kumar Mahinthakumar 3207 Fitts-Woolard Hall (919) 515-7696 <u>gmkumar@ncsu.edu</u>.

Zoom personal link:

https://ncsu.zoom.us/my/gmkumar

Office Hours via Zoom (link is posted on moodle)

Tue 12:00 noon – 1:00 pm and Thu 4:00 – 5:00 pm

Join Zoom Meeting:

https://ncsu.zoom.us/j/91924228584?pwd=NlloZW5FRDFlenhRVUFqV0wyVVIPUT_09

Teaching Assistant (available via email and zoom appointment)

Mr. Krishna Mohan <u>gkrishn5@ncsu.edu</u>