NORTH CAROLINA STATE UNIVERSITY DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

MAE 435: PRINCIPLES OF AUTOMATIC CONTROL

DR. GREGORY D. BUCKNER

SUMMER 2024

Moodle Site: https://wolfware.ncsu.edu/courses/my-wolfware/E-mail: gbuckner@ncsu.eduDiscussion Board: on Moodle Site

COURSE DESCRIPTION

An introduction to feedback control of linear systems, with emphasis on linear system dynamics, time and frequency response, stability analysis, classical control theory, and design applications.

COURSE OBJECTIVE

To provide students with practical design skills and tools for the synthesis of engineering control systems.

PREREQUISITES

MA 341 (Applied Differential Equations I) or equivalent

COURSE NOTES (REQUIRED)

- Print: Buckner, G.D., Course Notes: MAE 435 Principles of Automatic Control (Spring
- 2024), available via the NCSU Bookstores (anthony_sanders@ncsu.edu, 919-515-3868)
- **Digital**: https://ladbookstore.com/products/principles-of-automatic-control

WEBASSIGN ACCESS (REQUIRED)

Access code must be purchased for homework and exams (http://www.webassign.net)

RECOMMENDED REFERENCE TEXTBOOK (NOT REQUIRED)

- **Print**: Franklin, Powell, and Emani-Naeini, *Feedback Control of Dynamic Systems*, any recent edition, Pearson Prentice-Hall, Upper Saddle River, NJ.
- **Digital** ("All-In E-Text"): available via course Moodle site

GRADING (YOUR CHOICE... FINAL EXAM IS OPTIONAL)

-	<u>Option 1</u>	Option 2
Midterm Exams (2)	40%	50%
Homework ¹	15%	20%
Pop Quizzes ²	5%	5%
Design Project	20%	25%
Final Exam	20%	

¹ WebAssign-based, lowest score dropped, <u>late homework not accepted!</u>

 $^{\rm 2}$ Moodle-based, lowest score dropped

GRADING SCALE (REQUIRED %)

A+	А	A-	B+	В	B-	C+	С	C-	D+	D	D-
98	92	90	88	82	80	78	72	70	68	62	60

TENTATIVE SCHEDULE

Week	Topics	Optional Text Read	Archived Lecture Date	Due Date
May 15	I. Introduction		1/9	
	Feedback systems, terminology	1.1-1.3		
	II. Dynamic System Models			
May 20	Modeling mechanical systems, Modeling electrical,	2.1	1/16,18	
	electromechanical systems	2.2, 2.3		
	Equivalent linear system representations:		1/23	
	differential equations, state space,	7.1, 7.2	1/25	HW #1
May 27	transfer functions, block diagrams,	3.2		Due
	Linear systems: characteristics, linearization,	9.2	1/30	
June 3	III. Analysis of Linear Systems			HW #2
	Laplace Transforms: properties, final value	3.1	2/1	Due
	theorem, partial fraction expansion		2/6	
June 10	Poles and Zeros: stability, transient response	3.7.1	2/8	HW #3
	Time response of first-order systems	3.3		Due
	Time response of second-order systems			
	Exam Review (confirm proctor is EOL-approved)		2/20,Q&A	
June 14	Midterm Exam #1			
June 17	IV. Computer Simulation of Dynamic Systems			
	Numerical Integration: Euler's Method		2/15	
	Numerical simulation using MATLAB/Simulink			
June 24	V. Basic Feedback Control		2/27	
	PID control	4.3	2/29	
	Benefits of feedback, disturbance rejection,	4.1, 4.2	3/5	HW #4
	sensitivity			Due
July 1	VI. Design Tools for Classical Control			
	Routh's stability criteria	3.7.2	3/7	
	Root locus: manual plotting	5.1-5.3	3/19	HW #5
	Root locus: MATLAB tools		3/21	Due
July 8	Design Projects Assigned		3/21	
	Compensator design using Root Locus:		3/21,28	
	Pole and Zero Compensation	5.4-5.6		
	VII. System Type and Steady-State Tracking Errors	4.2	3/28	HW #6
	Exam Review (confirm proctor is EOL-approved)		4/4, Q&A	Due
July 12	Midterm Exam #2			
July 15	VIII. Frequency Response		4/2	
	Bode plots	6.1	4/4,11	
_	Bode plots using MATLAB			
July 22	Relative Stability: Gain and phase margins	6.4	4/16, 18	
_	Course conclusion		4/23	
July 26	Design Projects, Final Assignments Due			
July 30	Final Exam (Optional)			Final Exam

OTHER

Lecture videos are accessible via the course Moodle site (https://wolfware.ncsu.edu/). These lectures were recorded during the spring semester of 2024; due dates and deadlines discussed in these videos obviously do not apply to the summer semester. The schedule on the next page lists recommended dates for viewing lectures, plus dates for exams, homework submissions, and project submissions.

> Late homework will not be accepted.

- Academic dishonesty rules, as outlined in the NCSU Code of Student Conduct, will be strictly enforced. Any suspected act of academic misconduct will be immediately referred to the NCSU Office of Student Conduct.
- Students are encouraged to work in small groups and use additional reference materials for the solution of homework assignments and design projects. However, copying and submitting the work of other students as your own is a violation of the NCSU Code of Student Conduct, and will be treated as such.
- Note: copying figures, equations, or text from other sources without properly referencing these sources is plagiarism: a violation of the NCSU Code of Student Conduct that will be referred to the NCSU Office of Student Conduct.
- Any student with a disability who is registered with the University Office of Student Disability Services should schedule an appointment with Dr. Buckner at the beginning of the semester to discuss academic accommodations.
- > Online course evaluations will be administered during the last three weeks of the semester.