MAE 550

Foundations of Fluid Dynamics

Fall 2024

Section: 001/601 Location: EB III, Room 2232 Days: MW Time: 11:45 am – 1 pm Instructor: Prof. Tarek Echekki Office: EB III, Room 3234 E-mail: techekk@ncsu.edu Office Telephone: (919) 515 5238 Office Hours: Tue 2-4 pm

<u>**Text</u>**: Pijush K. Kundu, Ira M. Cohen, and David R. Dowling, <u>Fluid Mechanics</u>, 5th or 6th Ed., Academic Press. This is a recommended textbook; it is not required. A link to the electronic version available through the NC State Libraries will be accessible through Moodle.</u>

Prerequisites: MAE 201, 251 or 308 (Undergraduate Thermodynamics and Fluid Mechanics)

<u>Course Objectives</u>: The students will develop an understanding of the foundations of fluid dynamics. Through the study of MAE 550, the student will be able to:

- Develop tools for the characterization of fluid flow;
- Develop the basic equations for the transport of fluids;
- Be able to use these equations and derive simplified forms
- Be able to analyze some basic internal and external flows.

Course Grade:	Homework	20%
	Hour Tests (2)	50%
	Final Exam	30%

The final grade will be based on the final average and determined as follows:

A- $(90 \text{ to} < 93)$	A (93 to < 97)	A+ (97 and above)
B- $(80 \text{ to} < 83)$	B (83 to < 87)	B+ (87 to < 90)
C- $(70 \text{ to} < 73)$	C (73 to < 77)	C+ (77 to < 80)
D- $(60 \text{ to} < 63)$	D (63 to < 67)	D+ (67 to < 70)
F < 60		

Course Syllabus:

	Kundu & Cohen	Kundu, Cohen and
Торіс	4 th Edition	Dowling 5 th Edition
Introductory concepts	Chap. 1	Chap. 1
Vectors, tensors and integral theorems	Chap. 2	Chap. 2
Kinematics of local fluid motion: Lagrangian	Chap. 3	Chap. 3
and Eulerian descriptions, substantial or material		
derivatives, decomposition of motion, vorticity,		
rate of strain, streamline coordinates		
The Navier-Stokes equations: the stress tensor,	Chap. 4, 5	Chap. 4, 5
differential forms for mass continuity,		
momentum, energy, angular momentum, second		
law, vorticity		
Variants of the Navier-Stokes equations and	Chap. 4	Chap. 4
approximations (Inviscid: Euler and Bernoulli,		
Stokes flow, Boussinesq)		
Some solutions of the Navier-Stokes equations	Chap. 9	Chap. 8
Boundary layers	Chap. 10	Chap. 9
Special Topics: Turbulence, vorticity,		

MAE 550 Syllabus

Exams

Test 1	On-campus Section: 9/25/2024
	DE Section: The test window is from 9/23/2024 to 9/27/2024
Test 2	On-campus Section: 11/6/2024
	DE Section: The test window is from 11/4/2024 to 11/8/2024
Final	On-campus Section: Monday, December 9 from 12:00 pm to 2:30 pm, 2024
Exam	DE Section: The test window is from 12/9 to 12/11, 2024 (2.5 hours).

POLICIES AND PROCEDURES

- 1. There will be two tests and a final examination and frequent homework assignments. All exams will be closed notes, and closed books.
- 2. Arrangements for missed tests and potential conflicts with exam times or windows are made on an individual basis provided there is an acceptable, certifiable excuse.
- 3. Students are highly encouraged to do homework problems as assigned. The following procedure is recommended when attempting homework problems as well as for all solutions on tests and exams.
 - State the problem and draw the appropriate system or control volume if possible.
 - State clearly the <u>assumptions</u> you make and state the basic equations you use.
 - Show all the steps needed to find your final answer.
 - If you present a graph as part of a solution, label the axes and the curve; include the units, and choose a scale that can be easily interpolated. Regardless, please do not plot graphs by hand (I do get that occasionally!).
 - Place your final answer or conclusion in a box so that it stands out.