ECE592-084/CSC591-084: Optimizations and Algorithms

Instructor: Dr. Shih-Chun Lin (919-515-5128; <u>slin23@ncsu.edu</u>)
Classroom: EB2-1230
Credit Hours: 3
Class Time: Mondays and Wednesdays, 4:30 P.M. – 5:45 P.M.
Instructor Office: 3072 Engr Bldg II
Instructor Office Hours: Mondays and Wednesdays, 6 P.M. – 7 P.M. at Zoom section or by email appointment with "[ECE592]" in the subject line.

Course Description: This course introduces advanced optimization theory and algorithms with rapidly growing applications in machine learning, systems, and control. Methods are given to obtain a non-dynamic system's extremum (minimum or maximum) and use these methods in various engineering applications. This course aims to prepare graduate students with a solid theoretical and mathematical foundation and applied techniques at the intersection of optimization, algorithms, and machine learning to conduct advanced research in related fields. Students will gain expertise in designing algorithms based on common techniques, dealing with intractable problems, and implementing algorithms given the description. Students must undertake a semester-long project (at Google Colab) that practices the optimization theory and algorithms in their areas of interest. These projects can replicate or improve a known solving strategy for a given optimization problem to assess and compare the performance.

Student Learning Outcomes: Upon completion of this course, students will:

- Solid Theoretical Foundation: Develop a profound theoretical understanding of optimization, algorithms, and machine learning, providing them with a solid academic basis for advanced research.
- Algorithmic Proficiency: Gain expertise in designing algorithms based on commonly used techniques, enabling them to address complex and intractable problems effectively.
- Implementation Skills: Acquire the practical skills to implement algorithms based on descriptions, fostering their ability to translate theoretical knowledge into tangible solutions.
- Research Experience: Undertake a comprehensive semester-long project using platforms like Google Colab, applying optimization theory and algorithms to areas of personal interest.
- Problem Solving and Evaluation: Engage in projects that involve replicating or enhancing existing solving strategies for optimization problems, allowing students to assess and compare their performance critically.

By focusing on these learning outcomes, this course prepares students to navigate the intricate landscape of optimization, algorithms, and machine learning and contribute significantly to advanced research in these vital domains.

Course Structure

Prerequisite: Introductory courses in Probability and Linear Algebra.

Textbook: E.K.P. Chong and S.H. Zak, "An Introduction to Optimization," John Wiley & Sons, 2013. The course website will provide a list of essential and trending papers. Useful reference books/papers on optimization theory and mathematical backgrounds include:

- S. Boyd and L. Vandenberghe, "Convex Optimization," Cambridge University Press, 2004.
- Y. Nesterov, "Introductory Lectures on Convex Optimization: A Basic Course," Springer, 2004.
- M. Bazarra, H.D. Sherali, and C.M. Shetty, "Nonlinear Programming: Theory and Algorithms," John Wiley & Sons, 2006.

• P. Domingos, "A Few Useful Things to Know about Machine Learning," Communications of the ACM, vol. 55, no. 10, pp. 78-87, October 2012.

Course Materials: Slides and in-class notes on Moodle.

Topics:

- Nonlinear unconstrained optimization, linear programming, nonlinear constrained optimization, computational and search methods for optimization, convex optimization, and integer programming.
- Greedy, divide and conquer, dynamic programming; approximation algorithms.
- Stochastic optimization, sparsity, regularized optimization, interior-point methods, proximal methods, robust optimization.
- Convergence rate analysis, momentum-based acceleration, distributed and asynchronous algorithm design, saddle point escaping.

Course Project Information:

• The course project will be a group project, and each group will consist of 3 students.

Semester-long project:

- 1. *Research:* Let students practice the optimization theory and algorithms in their areas of interest. It is allowed to be a replication or an improvement of a known solving strategy for a given optimization problem to assess/compare performance characteristics.
- 2. *Survey:* Choose a contemporary topic of optimization theory and algorithms or machine learning, read some recent papers related to your selected topic, and prepare a survey covering these papers. While some suggested topics will be provided by the instructor (available on a first-come, first-served basis), you can also propose your survey topic that may be of higher interest to your group.
- Two project deliverables are expected (no partial credit will be given for late project submissions):
 - 1. A 1-page extended abstract (25%): Due September 16, 2024
 - 2. A final report and slides (75%): Due December 2, 2024

Extended Abstract and Final Report/Slides Format:

- An extended abstract and final report should be written based on the IEEE conference paper template, which can be found in the link below. The final report should be **10 to 11 pages (double-column, single-spaced).** Also, **the corresponding presentation slides in PPT** to convey the know-how should be submitted following the class note format.
 - https://www.ieee.org/conferences/publishing/templates.html
 - (use of LaTeX over MS Word is strongly encouraged for writing your reports)
 - Introduction, later sections, conclusion, references.
 - There should be multiple figures (e.g., 6-8 figures) and a table summarizing and classifying the key references (may have multiple columns studying different tradeoffs).
 - Some technical depth would be useful if relevant.
- Your 1-page extended abstract should include a summary of the proposed work and a plan (in table format) on how each group member will contribute to the project. Similarly, your final report should include an appendix section that briefly describes who worked on which part of the project.
- All used references should be explicitly cited within your report and slides. Plagiarism (e.g., copying/pasting from Wikipedia or other papers without providing citations and changing wording) will be heavily penalized during grading. Everything in your reports should be in your own words.

Grade Determination

Grade Distribution:

40% Four homework assignments; each contributes 10%

35% Semester-long project: 25% abstract and 75% report/slides

25% Midterm exam

Weighted averages of 90, 80, and 70 will guarantee minimal letter grades of A-, B-, and C-, respectively.

Course Schedule

Course Outline

Introduction (~4 Lectures)

- Motivating Examples
- Mathematical Preliminaries

Unconstrained Optimization (~8 Lectures)

- First- and Second-Order Conditions
- Algorithms for Unconstrained Optimization
 - One-Dimensional Search Methods
 - Gradient Methods
 - Newton Methods
 - Conjugate Direction Methods
 - Quasi-Newton Methods

Least Squares Analysis (~2 Lectures)

- Examples and Basic Properties
- Least Squares Algorithm
- Recursive Least Squares Algorithm

Random Search Algorithms (~2 Lectures)

- Simulated Annealing
- Particle Swarm Optimization
- Genetic Algorithms

Linear Programming (~3 Lectures)

- Examples and Basic Properties
- Simplex Method
- Duality

Nonlinear Constrained Optimization (~4 Lectures)

- Lagrange and Second Order Conditions
- Karush-Kuhn-Tucker and Second Order Conditions
- Algorithms for Constrained Optimization
- *Convex Optimization* (~3 Lectures)
- Convexity
- Optimality Conditions
- Linear Matrix Inequalities (LMIs)

	Date	Торіс	Homework Assigned	Homework Due
Week-1	Aug 19	Introduction		
	Aug 21	Introduction		
Week-2	Aug 26	Introduction	HW1	
	Aug 28	Introduction		
Week-3	Sept 2	Labor Day (No class)		
	Sept 4	Unconstrained OPT		
Week-4	Sept 9	Unconstrained OPT		
	Sept 11	Unconstrained OPT		HW 1
Week-5	Sept 16	Unconstrained OPT	1-Page Project Pr	oposal Due (25%)
	Sept 18	Unconstrained OPT	HW2	
Week-6	Sept 23	Unconstrained OPT		
	Sept 25	Unconstrained OPT		
Week-7	Sept 30	Unconstrained OPT		
	Oct 2	Least Squares Analysis		
Week-8	Oct 7	Least Squares Analysis		HW2
	Oct 9	Midterm Exam Practice		
Week-9	Oct 14	Fall Break (No class)		
	Oct 16	Midterm Exam at 4:30 P.M. – 5:45 P.M.		
Week-10	Oct 21	Random Search Algo.	HW3	
	Oct 23	Random Search Algo.		
Week-11	Oct 28	Linear Programming		
	Oct 30	Linear Programming		
Week-12	Nov 4	Linear Programming		
	Nov 6	Nonlinear OPT	HW4	HW3
Week-13	Nov 11	Nonlinear OPT		
	Nov 13	Nonlinear OPT		
Week-14	Nov 18	Nonlinear OPT		
	Nov 20	Convex OPT		
Week-15	Nov 25	Convex OPT		HW4
	Nov 27	Thanksgiving (No class)		
Week-16	Dec 2	Convex OPT Final Project Report/Slides Due (75%)		
Week-17	Dec 13	Fall grade due by 5 P.M. on 12/13, Friday		

• The course schedule is subject to change with appropriate notification to students.

• Audit students need to do all the homework, take the midterm exam, and have at least a B- to get a passing grade. They do not need to work on the project.

Late Assignments Policy

- 1. There will be a total of 4 homework throughout the semester.
- 2. Late homework assignments will receive a 50% penalty for being up to one day late and no credit if submitted later than one day after the deadline. If you miss the deadline for the homework by less than one day, email the homework to me and the TA and take the 50% penalty.
- 3. Every homework assignment will have an equal weight.
- 4. If you have any questions regarding the homework, please see the TA first and seek answers on the Piazza (the course's online discussion forum). If you still need clarification after contacting the TA, please get in touch with me.

Academic Integrity: Students should refer to the University policy on academic integrity found at <u>https://studentconduct.dasa.ncsu.edu/academic-integrity-overview/</u> and the Code of Student Conduct (<u>NCSU POL11.35.01</u>) and Pack Pledge

Authorized aid on an individual assignment includes discussing the interpretation of the problem statement, sharing ideas or approaches for solving the problem, and explaining concepts involved in the problem. Any other aid would be unauthorized and violate the academic integrity policy. All cases of academic misconduct will be submitted to the Office of Student Conduct. Violations of academic integrity will be handled in accordance with the Student Discipline Procedures (NCSU REG 11.35.02).

Statement for Students with Disabilities: Reasonable accommodations will be made for students with verifiable disabilities. In order to take advantage of available accommodations, students must register with the Disability Resource Office at Holmes Hall, Suite 304, 2751 Cates Avenue, Campus Box 7509, 919-515-7653. For more information on NC State's policy on working with students with disabilities, please see the Academic Accommodations for Students with Disabilities Regulation (<u>NCSU REG 02.20.01</u>).

Digital Course Components: The following digitally-hosted course components will be used: Moodle, Zoom, Panopto, Slido, and Piazza. Students may be required to disclose personally identifiable information to other students in the course, via, digital tools, such as email or web-postings, where relevant to the course. Examples include online discussions of class topics, and posting of student coursework. All students are expected to respect the privacy of each other by not sharing or using such information outside the course.

Insurance of Course Continuity: to ensure course continuity, changes made to the method of instructional delivery, course structure, course schedule, number of assignments, grading or other aspects of the course after the start of the term should be communicated to all students in written form (e.g., dated syllabus revision or syllabus addendum) when course changes are implemented.

Additional NC State Rules and Regulations: Students are responsible for reviewing the NC State University Policies, Rules, and Regulations (PRRs) which pertain to their course rights and responsibilities, including those referenced both below and above in this syllabus:

- Equal Opportunity and Non-Discrimination Policy Statement <u>https://policies.ncsu.edu/policy/pol-04-</u> 25-05 with additional references at <u>https://oied.ncsu.edu/divweb/policies/</u>
- Code of Student Conduct <u>https://policies.ncsu.edu/policy/pol-11-35-01</u>